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ABSTRACT

This thesis was motivated by a study performed by Commander Submarine Force
Pacific (COMSUBPAC) of detection rates for a random search model
COMSUBPAC’s study concluded that the probability of nondstection to time 1,
PND( ¢ ), was not of the form exp (- ¢), as believed by many. The target motion
model used for that study was a new and interesting model, therefore this investigation

began by analyzing that model. This investigation discovered that the density of -

targets for COMSUBPAC's motion model was not uniform over the search area, which
might lead to a nonexponential form for PND( ¢). To lend support to the hypothesis
that a uniform distribution of target position can lead to an exponential form of
PND( 1) the target motion was altered to achieve a uniform target density. The same
basic target motion was used because of its inherent advantages over other target
motion models. Three different types of boundary reflection patterns were analyzed for
their ability to create a uniform target density. Two of those patterns were successful,
but only one was suitable for further analysis. Support for the hypothesis was
achieved when the PND( ¢) using this new uniform density target motion mode| was
found to be of exponential form, It was also discovered that the exponentiul detection

rates for this new simulation model were very close to the detection rates predicted by
B. O. Koopman's random search formula,
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1. DESCRIPTION OF HENZE’S NODE MODEL

A. INTRODUCTION

It is a very difficuls, if not impossible, computational problem to calculate the
probability of detection or mean time to detection for a stationary searcher against a
target moving ‘randomly’, although some limited successes have been made.
B. O. Koopman made several assumptions about the random target motion [Ref. 1] and
achieved his well known result that the time to detection is an exponentially distributed
random variable, J.N. Eagle has analyzed a Brownian motion target and found a
closed form solution for the probability of nondetection to time t, PND( ¢ ), which
involved an infinite sum of Bessel functions [Ref. 2: page 44). He also discovered a
more simple solution in exponential form as ¢ becomes arbitrarily large. Previous
thesis students at the Naval Postgraduate School (NPS) have examined popular motion
models, such as the diffusing target and random tour target, using computer
simulations [Refs, 3,4]. They concluded, for these target motion models, that the
PND( ¢ ) had an approximate exponential form,

A new target motion model was recently introduced by J. Henze [Ref. §]. Henze
reported that Monte Carlo simulation using this model provided a time to detection
which was distributed as a Pareto' random variable, rather than the exponential
random variable many would have expected. We begin investigating this nteresting
and surprising result with a description of the Henze target motion model.

B. DESCRIPTION OF HENZE’S NODE MODECL
1. Search Area A

The target is constrained to a circular search area A. In many studies a
square or rectangular region is specified, perhaps because boundary reflections (which
are easier to model with linear area boundaries) are required. [lenze also uses a square
search area in his studies, but identical results can also be achieved with a circular
search area. A circular area is radially symmetric and eliminates any target motion
problems which might occur in the corners. For theoretical studies such as this, a

I'The Pareto distribution considered in this thesis and Henzﬁ’s study has a
probability distribution function, f{x), of the form: (x)=y(1+yxp)" + l). wherc v is
the detection rate, R is the detection radius, A is the search area, v is the target speed,
and y=2R v/ A. B=2in both studics, where B is the shape parameter.

10




circular arca is more appropriete and will be the only geometry considered. In order to
further simplify the geometry, A will be equal to %, which means that the search arca
radius, R 4, is cqual to one.
2. Motion of the Target
The target moves randomly from point to point (or node to node) in a straight
line at constant speed over the scarch area A (sce Figure 1.1 ). The nodes are chosen
randomly and independently from a bivariate uniform distribution of the search region

3
ofrecTion -
:
i‘
{
]
1 TN
v
» Figure 1.1 Henze's Simulation Geometry.
N
; A. The motion is very simple and requires no reflections oft area boundaries. There is
- also no need to estimate coeflicients such as a difTusion constant or a rate of course
L]
o change for the target, as required in other popular motion models [Refs. 34|, Thus the
" Hence target motion model appears very attractive for operational analysis of the
¢
b, search problen,
L)
4 3. Target Starting Position
M Ihe target's starting position is uniformly distributed over the scarch region A
m and is selected independently from the same distribution as the target nodes,
’ 4. Turget Velocity v
) Unless otherwise noted the target velocity v used in cuch simulation is always
5
o « . ~ . g . [ . . v
. cqual to one scarch area radivs per unit of time . This is a unic velocity with v =1,
b~ , ‘ . . ,
L which allows the results to be stated eyuivalently in termis of distance tiaveled or time
™
S traveled,
®
LY
‘ 1
L]
t
\J
3 -
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5. Searcher Location
The seurcher is stationary for the entire search period, but for each repetition
of the simulation the searcher’'s location is selected independently from the same

bivariate uniiorm distribution as the target nodes, ’
6. Detection
The searcher has a deterministic detection capability over a disk of radius R .

(see Figure 1.1 ). The probability of detection inside this disk is equal to one, and
therefore the searcher is said to have a ‘cookie cutter’ sensor with detection range R
[Ref. 6: page 2-1). Detection occurs the first time that the target enters the searcher’s
detection disk; that is, when the distance between the target and the searcher is less
than R. In order to minimize the consideration of edge effects, the detection range R
should be considerably sinaller than Ry. Since Ry=1, R is the ratio of detection
radius to search area radius.

C. DESCRIPTION OF PROGRAM NODE
1. General

Program NODE, found in Appendix A, is a Monte Carlo simulation of the
search scenario described above. Arbitrarily, the stationary platform is called the
‘searcher’, and the moving platform the "target’, where the target can be thought of as
a submarine and the searcher as a sonobouy, NODE is coded in FORTRAN and is
designed for use at the NPS. NODE uses the external subroutine LRND in the Non-
international Mathematics and Statistics Library (NONIMSL) to generate uniform
random variables and it uses the GRAFSTAT graphics system. NODE is an event
drivea simulation, which is much more efficient than a time step simulation. Instead of
stepping through incremental time steps and then updating the situation, NODE
evaluates the situation at the end of each target leg and analytically solves the
equations for detection during the leg. As opposed to time stepping, this path is nor
approximated by a series of points. Therefore detection may occur exactly at the
detection disk boundary, and it is not possible for the simulated target path to jump
across the edge of the detection disk without achieving detection. This more elegant
process aiso eliminates ihe potential inaccuracies involved with determining a time step

increment. The program will also run much faster than a time step simulation. This
‘ eliminates the rced to terminate the repetition after some TMAX which would also
) introduce inaccuracies.
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2. Inputs
" ¢ Radius of detection disk R
® Target speed v
‘- ¢  Number of replications (NREP)
3. Functioning of the Program

. a. At the beginning of each replication, the initial starting position of the
target and the searcher is drawn from a bivariate uniform distribution
over the area A,

. b. The target’s next position is drawn independently from the same
: distribution. These two points form a line for the search leg.

| ¢. In order to determine if a detection has occurred on the search leg the
| equations for the search leg line
! (Y-Ynew)*(Xold-*new) = (X-Xnew)*(Yo1d-Ynew)

! and for the searcher’s detection c:i,isk 2 2
‘ (XXsearcher)” + (Y-Ysearcher) = R
" are solved simuitaneously for the coordinate (X,Y) of intersection where

(Xo1dYaldh (xnew,'y:}ew) are coordinates for the beginning and ending

© g search leg respectively and (XgenpcherVsearcher) 4r¢ coordinates for the
searcher.

) d. If only an imaginary solution to the system of equations cxists then
) there has been no detection and a new target position is drawn.

e. If there is a solution then it must be determined if the solution exists
between the old and new target positions. If it does not then again
there has been no detection and a new target position is drawn, If it
does then a detection has occurred.

f.  After each target node the time to detection counter is updated.

8. After cach detection the replication terminates and the process continues
until the specified number of replications is reached.

' 4. Output
For each replication the simulation output is the total time ¢ which it took for
the searcher to make a detection. This data is then read into GRAFSTAT from which
. graphs of PND( ¢ ) may be drawn and analyzed. )

PR

P .

13 :

AP L LT R e e e e R e ) e T e e e e e b T "-"'h‘_'."-'\f ) i TN ﬁ-"P,‘\,"b' }
W AN . .'..‘l U0 Pl At W g W

W Wi Vvt




II. ANALYSIS OF HENZE’S NODE MODEL

'E

kK A.  INTRODUCTION

b Koopman [Ref. I; p. 6] argued that PND( 1 ) is exp(-2R v /A), where v is the .
" speed of the random search, R is the detection range, and A is the size of the area in
X which the random search is performed. Henze’s results suggest that PND( ¢ ) is not
K exponential as suggested by Koopman. Instead it is more closely represented by a
i‘i Pareto distribution. This apparent inconsistency is curious and requires some further
' investigation. This chapter will delve into Henze's search model and try to discover the
‘:i reasons for the disagreement between Henze's results and Koopman's theories.

> B. INVESTIGATING THE DEPENDENCE ON SEARCHER’S POSITION

K 1. Boundary Effect

'_l.; : As mentioned earlier, at the start of each repetition Henze chose the
b stationary searcher’s position (X v Y ) from a bivariate uniform
E: distribution where ’ sonrcher searcher

; (xsca\rcher)z'*'(Ysearc}'u:r)z< AlT.

a Selecting the searcher’s position from this distribution allows part of the searcher’s
o detection disk to be outside the search area boundary if

E (xseaa\rcm:r)2 + (Yso:archcr)2 > (VTAR)-R)2

‘ When this situation occurs, the time to detection will be greater than otherwise, since
; the size of the detection disk is effectively reduced. By changing Henze's model to
: select the scarcher’s position from the bivariate uniform distribution where

,: (xscar«;l‘;er)2 + (Ysearchcr)2 < (m)'R)z

, a closer {it to the exponential distribution of PND( ¢ ) is achieved, although the Pareto
i) distribution still provides the best fit. All further analysis of Henze's model includes

this revision,
2. Radial Effect
a. Pareto and Exponential Chi-Square Values
In order to investigate how PND( ¢ ) varies with respect to searcher
. location, simulations were performed where the stationary searcher position was not ~
- selected from a uniform distribution, but was fixed at one point. Then for different
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simulation runs, this point was moved along the radius of the search area. By
:. comparing the Chi-Square goodness-of-fit values assuming that the times to detection
| are distributed exponentially with the Chi-Square values assuming a Pareto
- distribution, we are able to determine how the fit of the PND( ¢ ) varies with searcher
-"Q location. Remembering that the smaller Chi-Square value the better the fit, Figure 2.1
shows that the Pareto distribution is a better fit near the area boundaries, while the
‘. exponential distribution gives the best fit towards the center. From Figure 2.1, with

¥ R=0.01, it appears that the crossover point where the best fit distribution changes
—j; occurs approximately at 0.75. Then the fraction of the search area where the
N exponential distribution provides the best fit is (0.75)2-0.56. approximately equal
B areas.

R Note also from Figure 2.1 that when the searcher position is «0.75 the

Pareto distribution provides a fit almost as good as that of the exponential distribution,
However, when the searcher is > 0.75 the Pareto fit is much better than the exponential

' fit. When the searcher’s position is uniformly distributed about the search area, the
ks extremely poor exponential fit near the area boundaries (totaling almost half of the
q entire area) helps explain why the Pareto distribution provided the best overall fit in
LI Henze's model.

i b. Steady State Target Density with no Searcher

. Some insight can be gained by examining the steady state distribution of
. targets following the Henze motion model. Figure 2.2 is a scatter and radial empirical
':: density plot of those positions when the searcher has been removed. Note that the
)

scales for the X and Y axes are not identical in this scatter plot and others in this
study. By observation it appears that the distribution of targets is not uniform.

) : Instead, a target is more likely to be found in the center of the search area as opposed
:‘-: to the edge. By measuring the radial distance of each of the points from the center and
e weighting each point by the inverse of its radial distance we are ablec to find the density
2 of targets as a function of distance {rom the center. Figure 2.2 distinctly shows that
S this density of targets is not uniform across the search area, which is a requirement of
:’ Koopman's random search formula. This observation could help explain Henze's
b results.

) C. EXAMINING PREDICTED DETECTION RATES
3 Another interesting fcature of Henze's model is that his detection rate does not
' approximate the detection rate which Koopman's random search formula would
\J
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predict, even when the searcher is at the center of the area where the detection rate is

¢ close to exponential. As mentioned earlier, Koopman's random search model predicts
f a detection rate of 2R v /A, The Henze target motion simulation included 10,000
" iterations 10,000 at each searcher detection radius R. A plot of the PND( ¢ ) vs time .
::j (or distance) traveled for values of R from 0.001 to 0.03 is illustrated in Figure 2.3
'f; Notice that the scale of the Y axis is logarithmic so exponential distributions will plot
R as straight lines and the search detection rate is the negative slope of these curves. The
‘»i? curves of Figure 2.3 are almost linear which implies that this distribution is
E‘; | approximately exponential. In his study, Henze notes that the Pareto approaches the
-"{E . - exponential distribution as the Pareto parameter B = 0. Table 1 provides a
s comparison of Henze's target model detection rate determined by least squares fitting
B of the simulation data with Koopman’'s random search detection rate. Note that the
9 .
:“;: TABLE 1
0 COMPARISON OF DETECTION RATES FOR RANDOM SEARCH AND
. HENZE'S MODEL
A
B -
W Retqcu andors § arch imulation S
. adius eters‘or; ates ete(cstﬁon Rates T
I - '
W 0.001 6.366E-4 13.25E-4 2.08
» 0.003 1.910E-3 4.279E-3 2.24
W 0006 3.820E-3 8.223E-3 215
' 0.0l 0.006366 0.013955 2.19

0.03 0.01910 0.04186 2.19

detection rate for Henze’'s model is more than twice that predicted by Koopman. This
might be explained by remembering that the target density for Henze's model was
concentrated in the center of the search area, precisely where the searcher is located.
g This should result in more detections per unit time; i.e., a higher detection rate.

It appears as if a nonuniform steady state target distribution may be a primary
reason why Henze’s model does not produce random search results, Our next task will

ot N i

-

)

5 be to modify Henze's target motion to achieve a uniform target distribution and
»

Y determine if the random searc. formula holds in that situation,

"
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III. RESTORING THE UNIFORM DISTRIBUTION OF TARGETS

A. INTRODUCTION

Prior thesis students [Refs. 3,4) have shown that with diffusion and random tour .
target motion models, Koopman's random search formula is a reasonable !
approximation, It would be useful to make the same connection using Henze's motion ‘
model, since his model has the important advahtages which have been previously ‘
discussed, The benefits of his model, such as simplicity and the use of operationally '

meaningful variables, should be retained in any revised model, But this revised model ";
must have one feature which Henze’s model is lacking, It must have a uniform steady "
state distribution of targets in order 'o meet Koopman's assumptions of random o

search. This assumption of Koopman’'s is more explicitly stated by Washburn 3
[Ref. 6; page 2-6]. B
We have seen that the target density in Henze's model was concentrated in the
~ center of the search arca, This central tendency of targets is caused by the manner in
which target turnpoints (nodes) are selected, By using Henze's method of target
motion, the probability that a target path will ever reach the search area boundary is 0,
Whereas in a model which permits boundary reflections (such as the diffusing and
random tour models examined in [Refs, 3,4] ) there are many target paths which
intersect the search area boundary. Therefore, in order to reduce the central tendency
of targets in Henze's model, it may help to include boundary reflections. This chapter
will investigate different types of target reflection to restore a uniform target
distribution to Henze’s model. There is no target involvement with the searcher in this

| DO e 8

Vil e 2

s :‘,

chapter. :
B. PERFECT REFLECTION MODEL v‘
1. Description of a Perfect Reflection Path "

A perfect boundary reflection (also known as specular reflection) is one in "\

which the angle of incidence is equal to the angle of reflection with respect to the ¢
boundary normal, This is illustrated in Figure 3.1. If the only influence on target -
motion in a circular area is perfect boundary reflection, then these angles are equal for
every reflection. Figure 3.2 shows several possible target paths for different reflection
angles. It is interesting to note that if the target does not pass through the center of A
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. on its first lcg, it never will.
center is the same for all legs.
2. Determining Target Density

Additionally, the minimum distance from any leg to the

: Whenever we determine a target density in this study it is important to ensure
K that the target is in steady state. By allowing the target to travel some ‘long’ distance,
\ say 50 area radii (S0R 5 ), we assume that the target distribution is in steady state, if' a
¥ ‘ . . . . ., ,
! stcady state distribution cxists, After the target is in steady state, we record its
)
B
o
\
M
&
K
[y -
)
!
)
2
&
3 Figure 3.1 Perfect Reflection Geometry,

position and then repeat this exercise for many targets. Eventually the empirical
N density is developed,
, 3. Target Starting Position is Uniformly Distributed on the Area Circumference ;
3 a. Creating the Target Motion :
A To create this perfect rellection motion, uniformly choose any two points
| between 0 and 21 on the circumference of the scarch area. Then let these two points
¥
3 define the first target leg and allow perlect reflection to determine the subsequent '
,‘: target mntion. This motion should have mwore of the target density at the area )
s boundaries than Henze's model due to these boundary reflections.

b, Analyzing Target Density
(1) Target Stop Time is Dererminisie,  Figures 33a and 3.3b display the

scatter plots and empirical density plots of target positions for five different stopping
[}
: 21
)
i . . . y R “ W '—{'-(:-n:' '
B s D DA O S or N o o N 4 P TS LT s 800 LTI O O T SRR R




AL &l )

Tl

LI U N R

& B T e

rd

RRLPS o W B

T

e b T A S €84

PR ey

L

Figure 3.2 Possible Paths for a Perfect Reflecting Turget,

" w ., P T TR | MR S I ',_\.'.'(."'-'.
B RN e 2 o N Y G e o i i By e
o4 ol 2 f Mo - . = - L ~

" A




g«

’
L,
s
o b
w - er
@ 5 .t"'; 40 .
‘. 2 W .
2 ..?’51 t"(":‘ il i -
{; ' 'l‘ .““’!‘ ,u ‘,! :
‘.2 o{*u .’ :. .; E
g ‘a"\s A "’h:'.. :A'F '0.‘.
ntlhen ik Al b
o Gy -
(E ! '-’.‘"ii" "
§ ¥ 3

-
b
d
b,
W
(3
'l
.r'

-4

o x

-8« 2 ) t a ‘f )

g ?@wﬁﬁ%f 3

f _' ..9"'::{':,.. .u. ‘“,'; "

8 ... "’. cl'o }‘ "‘; .¢‘= :'.‘. d |:

¢ TR |

; (&) . ‘\‘; )‘-'} i‘.\ 1

g E'é ‘: , v."'n&-‘ul"y } .

b & Al ""‘s‘ﬁ‘u: ‘

I b o “',Jl.’,\f!.g 8% :u;

1% n..‘.'. Y ML . .’

l.: E - ol a c

b= % : 'n.?j.\o g !.
Figure 3 3a Scatter Plots of Perfect Reflecting Targets ‘

Starting on the Circumlvrence for Stopping Times SUR 4 to 52R 4.

23

,‘,|p¢~l-~ -l\.&"""
f""'».'ﬂ’ Il'l‘l‘lhi-

', 4, . . A
R SR I A SR G

)
)




2 A K EIRCX

Figure 3.3b  Lmpirical Density Plots of Perfect Reflecting Targets
Starting on the Circumferene  for Stopping Times SUR to 52R.

M
0
9E -
m -
o Q\ ] ! Q
‘e : e
X} L z
” g Q Y
& J =
5 l 1]
) EH a
. ¢
s
14 S
. M g
5 i B
bl B ["‘
el
0 {s ¢
W S
] }
b‘ " .J._ i F 1 ; L
A0 LJ’L Wiin) ~ e
[p]
o 1
n y )
% . i
o
4
. | |
[ ! :
o
o : :
| i Y,
L L)
'.., PR i d n i :
TR (] ’ (]
. AUSNIO L3OV, "Wkl .
re
3 bkl
¢ 1 &
” ’ 35 2
O ' Q
0y L 18 0y
) ‘! ¢
| 3 1 5
Y] by
. -
! Q T &
© 43 (&
b 7
A b
g . &
Ir e
Pe ] | S -39 e VY R . |
’ ¢ [ i ] v 1 i 1 0
AUSNIO LJUNYL TYOIltAMT AUBNTO LIDWV! WOINIaN]
. L]
%

[ 4
r

»

a n - -y e VRS LY LG LR R RN, Gt Rt L LI LIt -, ram '.-'J"."-"'{"._"}" = n .-{-q. A
¢ rl ﬂI o ( ™ WL ANY *\‘ - = ' h.’l Lkt {l:! L3 f‘.. [ '\ \ v e 3
’!ﬂ.n‘l.& Ot ot I!:'al.q ) l.u'l.l lﬁ".l u- Le'd.e M o‘l!l L L0 !‘I.c o LY ) P REN XA M b L L




| e aw

times These stop times correspond to a path icngth of 50R 4 to 52R, and should be
long enough to achieve a steady state distribution, if such a distribution exists, Note
from Figures 3.3a and 3.3b that the target density is dependent on the target stopping
time. As the stopping time varies from S0R 4 to §2R the distribution completes one
full cycle. Note that on every even multiple of R the density is concentrated on the
boundary and on every odd multiple of R, the density is concentrated at the center.
This process is apparently cyclic and does not have a steady state distribution. This
feature makes this target motion unacceptable for our purposes.

(2) Target Stop Time is Random. The same perfect reflection simulation is
executed but this time for each repctition the target stop time is uniformly selected
between 50R, and 52R. When the stopping time is uniformly selected between one
cycle of the target steady state distribution, a mean value of the stopping time cycle is
produced which should generate a pseudo-stationary condition. Figure 3.4 illustrates
that the target density for this pseudo-stationary condition is still not uniform, which
requires us to investigate another motion model with a different set of conditions.

d. Target Starting Position is Uniformly Distributed in the Search Area
a. Creating the Target Motion

Now the target starting position is uniformly distributed over the entire
search area, and its initial direction of motion is uniformly distributed between 0 and
2n, When the target intersects the boundary, its next leg is determined by perfect
reflection,

b. Analyzing Target Density

Figure 3.5 illustrates that when the perfectly reflccting target starts
uniformly in the entire search area and chooses a uniform direction to begin searching,
the uniform target density is apparently reclaimed. Now thut we have found the
distribution which we were seeking it would be intercsting to see if this target
distribution rmay be achieved by any other target motion,

C. UNIFORM REFLECTION MODEL
1. Description of Uniform Reflection
A uniform boundary reflection is one in which the target’s scatter angle 0 is
not dependen' on the angle of incidence but is uniformly distributed betwecn -7, 2 and
7.2 from the boundary normal as suggested in Figure 3.6. Figure 3.7 is a sample path
for this type of target motion.

s lo ; "\.a o s I~ '* ':’"N A L"-{;{.H': Y

(3 A I S 0 LA N i o W L W o ST B R D NG SPAL I g ot

—

P




n

He A A A

A Ty YY)
L )

L)

--- RSN ‘n_: .

0
-
WY/

]
~ ord
I ! oy
Je o i
- -~
p’/ -3 I
- ]
- = N
B -
o4 ]
= [
< O -...
. uA o — Y
o <,

©

Lad

T
1 = -,
3 5
Xy
L4
=2
Om N
.l-
4 w o
O .
2 & s
L.‘.g i . x3
adta 5

3

0.2

(>

Perfect Reflecting Target Starting on the Circuraference
Wit AL T )

Stopping Time is Randomly Selected betwe

akm.ﬂw A o ... A
N e " 1 1 1 L1 T -
¥ £ z -
AJISN3A WORIANG o Z
= -
Y 4
. — o A
: <A
- .
<A
Pt -
lQh"
l' £ )
II\
249
.
L4
o
e |
.I\"‘ m
-
o |



-
-t*‘ W“‘.’

8 panifis

ITANe oS T, R T - F 3
c.~ i M»n.u. ...m@%ﬂ.&e..«ucu-.n"&ﬁ
DA O o L - el e

., Py o
°eq * Fe 2 el ® L. Ufo&'

RO R A

=,

o, f‘r . oIS v ﬁ - p 3.

%. aw..m‘.muu“w wr m...aﬁ... ...w.!m.. .u.nl:
TR Lt g G
DLV c e SRy g0
Rt I A Y A L

1 1 1 1

1.0

L
0.4 0.6 08

|
RADML DISTANCE FROM CENTER

02

g0 ro
ANSNIA 1398V1 Il

-
» ¥

S - [ ™. > -
o Iy - P o et N EISEEEy

) ..ﬂ:altcﬁ, { (et ow] .“u.ﬂ,.!l '

Iigure 3.5 DPerlect Rellecting Target when

Starting Unitormiy in the Scarch Area.

-‘ -_..:“\; 3

Y h Y —t Y it

.
ARV

AL

e
o ae W T

- * "
PP

)

L S Ty UL I Y]
T S R S T

At T

RO
o

. "'Jq..".a\.d.‘m..‘-)-

ks

- ;.;- ."-..n W



2. Connection between Uniform Reflection Model and Henze’s Node Model r
Another way to describe this type of target motion is very similar to Henze's
original node model. If each target turnpoint is randomly selected uniformly between 0
and 2m on the circumference of the search area, instead of choosing a uniform .

o e o
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: e
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: ty
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| Figure 3.6 Uniform Reflection Geometry, ' %,
’ . 3 . s + N ’ » ;“
reflection angle 0, then we have a situation identical to uniform reflection motion. It is . ::.
Il o f . . v N (X
a simple transformation of variables to show that selecting a uniform reflection angle © M
J
is equivalent to selecting a uniform point @ on the search area circumierence. To :f,

prove this consider Figure 3.6, Since A OAB is isosceles Angle OBA = Angle OAB =0
and @ = 20, If O is a random variable and is distributed between -%'2 and n.2 or
notationally, 8 ~ U| -%,;2, n,2 ] then

a=20~U[l-n,x]=U[0, 2n], .
where a is a random variable defining the turnpoint on the scarch area circumference, ’

3. Target Starting Position Is Uniformly Distributed on the Circumference A
a. Creating the Turget Metion \

H.’

Since having shown the cquivalence of uniform boundary reflections and
sclection of uniform circumference nodes, the creation of this target motion 1s relatively

. . . CooN
cusy. By randomly choosing an @ ~ U] 0, 21 | we may find the (X,Y) coordinate of A
\

the target turnpoint on the circumference of the search area with Ry =1 by \ \
N = sin(a) \
Y = cos(d). e

7

28 "

e

'

hph P e e e P L LA AP P N R R R L
"}1‘3‘?}?}?l'?;'?i‘:'.x‘li‘.’lfidf».'fL’.‘Lfi")gﬁL‘JLﬁ(."}uW.J\.‘.‘\.'Zv.fw.{xﬁ".'.t-%i{'ﬁ‘f.'. (ot e I LD 00D s,




h: Then for each target leg 2 new value for a is chosen and uniform reflection target
: motion is generated. A target density may be crcated by repeating this motion for
many targets and recording the target’s position after the target is in steady state.

b. Analyzing Target Density

°E; Figure 3.8 shows empirical density and scatter plots for steady state targets
i starting on the circumfcrence with uniform reflection motion. Notice that this target
L motion concentrates tiie target density on the area boundaries. Analysis performed by
i
k)
A
ﬁ“
K
S *d
. \ “‘.'Q_A ‘\
2
K
!
'\.
g
.
g
N 'ij XSk
;2 "\\\‘
Y
b
K
B Figure 3.7 Target Paths for Uniform Reflection.
. .
' Prof. E. B. Rockower of the Naval Postgraduate School derived the target density as a
i function of distance from the center of the area for this type of uniform reflection
: turget motion. His calculations are included in Appendix B. The fitted line in Figure
[ 3.8 is 4 plot of his density function and shows (when appropriately scaled so that both
' the curves have a density of one on the area boundary) very close agreement with the
empirically derived density from this simulation data,
L 4. Target Starting Position is Uniformly Distributed In the Search Area
! a. Creating the Turget Motion
[}

The target starts uniformly in the search arca and its initial direction of
motion is uniforraly distributed between 0 and 2r. When the target intersects the

1 boundary its next leg and all subsequent legs are determined by unitorm rellections as
W
described above.
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b. Analyzing Target Density

Figure 3.9 is the empirical density and scatter plots for a steady state
uniform reflecting target starting uniformly within the entire search area. This density

has the same shape as the density in Figure 3.8 which would be expected since the '
] target loses all memory of where it has been once it encounters a boundary, Therefore,
unlike the perfect reflection geometry (Figure 3.5) when the target also starts uniformly .

about the entire search area, a uniform distribution of targets is not obtained. There is
at least one other reflection method which should be investigated for completeness.

D. DIFFUSE REFLECTION MODEL
1. Description of Diffuse Reflection .
A diffuse reflecting target is similar to a uniform reflecting target. The
; difference is in the density function of the reflecting angle 6. Whereas 0~ U[-nt/2,r/2]

| for a uniform reflecting target, & diffuse target’s angle of reflection has a density
-
g function of the form

£{0)y=(1/2) COS(0)
where the range of @ is also -m/2 to ®/2. This reflection scheme is illustrated in

- 3 G

AD

-

By

\

Figure 3.10 DiflTuse Reflection Geometry. .

. .
Figure 3.10. o
The most important characteristic of JdifTuse reflection is that after a particle .
undergoes such a reflection, the particle flux density (number of particles per time per
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length) is constant in every direction, Consider Figure 3.11 where a diffuse reflection
occurs anywhere along a small length 8. The probability of a reflected particle crossing
line "a” is equal to the probability density on line “a” or approximately

82
f (1:2) CcOS (0) d6 = 82
6/2 .

where the limits of integration are the allowable reflection angles expressed in radians.
Therefore the ﬂux density threugh line "a”, which is the probability of being reflected
through line “a” per length of "u”, is (6/2)6 = 1/2. Similurly, the probubility of a
rellected purucle passing through line "b" is approximately

a+d,2

| (1,2)COS (8) 40 = (1/2) & COS (a).

a-8/2

But the length of line “b” is 8 COS (a), so the flux density through line "b” is also 1/2,

Figure 3.11 Diffuse Particle Rellection,

An alternate way to view these results is to assume that the line "8” is a difTuse light :;

source, ‘Then the intensity of the light would be constant independent of where the N

observer stands. A more complete description of difTuse rellection is found in [Refl 7). !
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2. Creating Diifuse Reflecticn Motion
The target starts uniformly in the search area and the direction which it
initially chooses to move unuii it encounters a boundary is chosen uniformly. Then the

reflection angle of the target, 8, is chosen from the cosine distribution, When the ’
target intersects a boundary again, another value for the random variable 8 is selected
and the process continues. : .

3. Analyzing Target Density

As shown in Figure 3,12 the density of targets appears uniform. Additional
experiments were performed with the target’'s starting position varying from the center
of the area (0.0) to the circumference (1.0). The target densities from these
simulations, shown in Figure 3.13, are uniform for each starting position, The
conclusion which may be drawn from these results is that any deterministic target
starting position or distribution of starting positions achieves a uniform steady state
distribution,
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Difluse Reflecting Target Density
for Various Target Starting Positions.
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IV. APPLICATION OF UNIFORM DISTRIBUTION OF TARGETS TO y

PND(T) i
A
A. INTRODUCTION 3
: In the last chapter we found that a uniform distribution of targets can be >
achieved, independent of where the target begins its motion, as long as the target is ::ﬁ
performing diffuse reflections, We also noted that perfect reflections will provide a ‘gg
uniform distribution of targets if the target’s starting position is uniformly distributed . :‘é‘:
in the entire search area, There were no conditions which provided a uniform target ?‘,
density for the uniform: reflecting target. In this chapter we will analyze one of the two 3
uniform density targst motion models, calculate PND( ¢ ) and determine if the model :E:
approximates Koopman's random search model, E':
WY,
B. CHOOSING THE MOTION MODEL r
As mentioned, we have investigated target motion models with three different 4 |
reflection patterns, and with the right initial conditions two of these models can create '
a uniformly distributed target density. One of Koopman’'s assumptions of random 5;
search is that the distribution of targets must be uniform, Following this assumptior it ¢
would appear that the choice of which reflection pattern to use for analysis does not '
matter as long as it meets the uniform condition but, as we will see, this is not entirely "
true. By referring tc Figure 3.2 of possible perfect reflection paths, we can see that if '.

the searcher is located in the center of the search area with detection radius R, there ’
will be many target paths for which the searcher will not make a detection. It would
not matter how long the simulation ran since the first reflection angle and target leg r
determines if the searcher will make a detection. Either the target gets detected on the :
first leg or not at all. Therefore we have shown that & uniform target density, as is the

]

case with the perfect reflecting target, may be a necessary but not a sufficient condition 3
L}

for random search, With the perfect reflecting and uniform target motions. eliminated, h

we will concentrate all further analysis on the diffuse reflecting target. 0,

C. COMPARING THE EXPONENTIAL TO THE PARETO DISTRIBUTION
FIT OF PND(T) 3

Henze found, and this study verified, that the Pareto distributicn provided a Y
better (it than the exponcntial distribution for the time to detection ¢, when Henze's 1
[)
R
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target motion model was used. The next logical step is to use our diffuse reflecting
target and again compare the Pareto and exponential distributions to the computer
generated PND( ¢ ) using the Chi-Square goodness-of-fit test. As before, we examine
the fit for various searcher locations. The results of this experiment are found in
Figure 4.1 and suggest the following conclusions:

1)  the exponential distribution provides a better fit than the Pareto distribution
irrespective of the searcher’s location

2) the quality of the exponential fit is also independent of the searcher’s position

3)  the exponential fit for the diffuse reflecting target is at least an order of
magnitude better than the exponential (it for Henze's target motion in Figure
2.1

This strongly suggests that Henze’s results are due to the nonuniform target density of
his motion model.

D. PROBABILITY OF NONDETECTION TO TIME T
1. For all Time t

Again we will perform an experiment as in Chapter II by comparing the
detection rate for the simulated target with Koopman's predicted detection rate using
random search, but this time we use the diffuse reflecting target. Recall that when we
used Henze's model, the simulation data did not provide a good estimate of
Koopman's random search model,

The diffuse reflecting target motion model experiment included 10,000
iterations at each searcher detection radius R. A plot of the PND( ¢ ) vs time (or
' distance) traveled for values of R from 0.001 to 0.03 is illustrated in Figure 4.2 Notice
that the scale of the Y axis is logarithmic, therefore exponential distributions will plot
as straight lines, The curves of Figure 4.2 are very nearly linear and the search
detection rate is the negative slope of these curves, Table 2 provides a comparison of
diffuse reflecting target detection rate determined by lcast squares fitting of the
simulation data with Koopman's random search detection rate. The simulation data
suggests the following conclusions:

a)  diffuse reflecung target PND( ¢ ) gives a reasonable estimate of Kocpman's
random search formula

b)  the estimate improves as R decrcases, which implies that the diffuse reflecting
target approximates random search in the limit as R = 0 or when R < < Ry

@

-
=

-y

- ¢)  the observed detection rate gocs not consistently under or over estimate the
detection rate predicted by Koopman which implies that there are no
consistent inaccuracies with the model.

T A L
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" 2. As Timet - 0
0% For the case of a diffusing target (as opposed to diffuse reflections), James N. i
- Eagle noted that for small ¢, the decrease in PND( ¢ ) is faster than exponential, %
' ;2 . implying that the curves are not linear as ¢+ = 0 {Ref. 2: page 47], Figure 4.3 is an
;:g enlargement of the upper left corner of Figure 4.2, Notice that the phenomenon which
1'55 . Eagle observed is not present in this target motion model. No explanation of this
R TABLE 2 1

COMPARISON OF DETECTION RATES FOR RANDOM SEARCH AND
HENZE’S REVISED MODEL WITH DIFFUSE REFLECTIONS

S e

0 _
" gt%ﬁtsl Ban& n S arch ngtsﬁanon -—S—
n etectxon ates etection Rates RS
0,003 1.910E-3 1.863E-3 0.98
&5 0.006 3.820E-3 3.782E-3 0.99 ‘
% 0.01 0.006366 0006435 1,01
& 0.03 0.01910 0.01933 1.01
= 0,05 0.03183 0.03310 1.04
v 0.10 0.06366 0.06854 1.08
i:-': 0.15 0.09549 0.10729 .12
3 0.20 0.12732 0.15152 1.19

=
-
3

effect is offered here except to remark that the absence of this effect permits the diffuse

reflecting target model to more closely approximate the exponential distribution and
provide a better tool for analysis.
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V. CONCLUSIONS

This thesis was motivated by a study performed by COMSUBPAC which
concluded that PND( ¢ ) did not have an exponential form, contradicting expectations
and some theory, In the process of investigating this problem, we discovered that the
target density for the COMSUBPAC model was not uniform, which is an assumption
made by Koopman in his development of the random search formula. Proceeding on
the assumption that the nonuniform target density was the cause of the nonexponential
distribution, we began investigating ways to reclaim a uniform distribution of targets in
the COMSUBPAC model. The busic characteristics of the Henze model were retained
due to iis desirable simplicity,

A diffuse reflecting target was found to provide the best reflecting scheme to
restore the uniform target density to the Henze model. An exponential PND( ¢ ) was
achieved with this new motion model which, for detectors with a relatively small size,

very closely approximated the detection rates predicted by Koopman's random search
formula.
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APPENDIX A
FORTRAN PROGRAM FOR REFLECTING TARGETS

1. DESCRIPTION OF THE VARIABLES

Alpha : Uniformly distributed random variable between 0 and 21 *

Anormal : Angle of the surface normal at the given point

Beta : Uniformly distributed random variable between 0 and 2%

Detect : Array of times to detection

Detrng : Definite detection range of the searcher

Dist  : Distance between two points

Dscrmt  : Discriminate from the solution to the simultaneous equations for
searcher’s detection disk and target path

Fposit : Final position of target's leg

Iposit : Initial position of target’s leg

Nreps : Number of repetitions for the search encounter

Secant : Distance between Iposit and Fposit or the length of the target’s path

Target : Coordinates of the searcher

Totdis : Total distance traveled by the target

Unifrm : Uniform random number between 0 and 1

Velcty : Velocity of the target

2,  FORTRAN PROGRAM ‘NODFE’

REAL FPOSIT(2),UNIFRM(9),IPOSIT(2),DETECT(9000),START(2),TARGET(2)
e o P e e e e o e e e e o o e e e o e e e e e e e e e s e e e e e o e s e ool e e e ek ok e ek e e e
*
kT AR R T SR SO T ek e ke e ek ok A S

ISTART .EQ. 1 FOR TARGET STARTING UNIFORMLY IN THE ENTIRE AREA.
ISTART . NE. 1 FOR TARGET STARTING UNIFORMLY ON THE CIRCUMFERENCE
OF THE SEARCH AREA
1START=0
IREFLT = 0 FOR DIFFUSE TARGET REFLECTION
IREFLT = 1 FOR UNIFORM TARGET REFLECTION
IREFLT = 2 FOR PERFECT TARGET REFLECTION
IREFLT = 3 FOR HENZE TARGET MOTION
IREFLT=0
NREPS: NUMBER OF REPETITIONS OF THE SEARCH

NREPS=10000

HEF XXX FENF HXXF
sana
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: DETRNG: DEFINITE DETECTION RANGE OF THE SEARCHER O<DETRNG<1l
* DETRNG=0.001
: VELCTY: VELOCITY OF THE TARGET

VELCTY=]l

PI=3,1415927

I¥X=10099

. TARGET§13=0.0
TARGET(2)=0.0

ek e ke o o e i o e i ke o ok ok v o e o i e i o e e ok ok e e 3 e e e o ok ok ol ok ol s o ok she vk o o o e she ke i e ke o ok ol sk e ke e e e ke

* BEGIN RE 0 EARCH
******ﬁ***iﬁiiiiﬁﬂ**i*ﬁ* Fesfe sk e e e e e e e sk e e s e e e sk e sk e ok vk e e sk e e

DO 300 I=], NREPS

TOTDIS=0
e e e ol e vl ke vt e e s i vk ke e e ke vk o o o ol sl sk 2 e e e o o ol i e e she sk e e ol ol e s v e e ol sk e e ok vk e ok ke e e e ok e o ke e e v ok e e ke ke

L RO S I S R S ——
IF (ISTART .EQ. 1 ) THEN

kkxkkk ENTIRE AREA START
CALL SEARCH (START,IX)
CALL DSTNCE(START,TARGET,DIST)
IF (DIST .LE. DETRNG) GO TO 200
CALL LRND(IX,UNIFRM,1,1,0)
ALPHA=2*PI*UNIFRM(1)
IPOSITglngTART$1;+2*COS$ALPHA

' X

IPOSIT(2)=START(2)+2*SIN(ALPHA

FPOSITél3'5TART£13~2*COS§ALPHA;
FPOSIT(2)wSTART(2)=2*SIN(ALPHA
CALL DISCRM (IPOSIT,FPOSIT,TARGET,1.0,DSCRMT,A,B)
CALL INTSCT(DSCRMT,A,B,S,T)
‘ FPOSITEI;'IPOSITsl3+5*$F?OSIT$1)-IPOSIT$1;;
| FPOSIT(2)=IPOSIT(2)+S*(FPOSIT(2)=IPOSIT(2
IPOSITil;'STARTilg
IPOSIT(2)=START (2

*kkkkk HENZE MOTION MODEL
IF (IREFLT .EQ. 3) THEN CALL SEARCH (FPOSIT,IX)

ELSE
*hxkkk  UNIFORM CIRCUMFERENCE START
CALL LRND(IX,UNIFRM,1,1,0)
ALPHA=2*PI*UNIFRM(1)

IPOSITSIZ'COS&ALPHA
IPOSIT(2)=SIN(ALPHA

IF (IREFLT .EQ. 0) THEN
*hkkkk DIFFUSE REFLECTING TARGET
CALL DIFUSE(IPOSIT,FPOSIT,IX,PI,TARGET)

!
;
y
N
N
y
'

ELSE
kk****% PERFECT OR UNIFORM REFLECTING TARGET
CALL LRND(IX,UNIFRM,1,1,0)
ALPHA=2*PI*UNIFRM(1)

FPOSIT&l;HCOSEALPHAg
FPOSIT(2)=SIN(ALPHA

TS e
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-
END IF o
END IF ]
Jokikkk TARGET SEARCH LOOP 4
100  CALL DSTNCE (IPOSIT,FPOSIT,SECANT) |
CALL DISCRM (IPOSIT,FPOSIT,TARGET,DETRNG,DSCRMT,A,B) .
IF (DSCRMT .LE. 0) THEN o
#xk%xk TARGET PATH DOES NOT INTERSECI SEARCHER'S DISK A
TOTDIS=TOTDIS+SECANTAVELCTY . N
IF (IREFLT .EQ. O) THEN b
kkkkkk DIFFUSZ REFLECTING TARGET -
xposzr(1gsrposxr$1; ")
IPOSIT(2)=FPOSIT(2 o
CALL DIFUSE(IPOSIT,FPOSIT,IX,PI,TARGET) B
ELSE IF (IREFLT .EQ. 1) THEN 43
*hkkwk UNIFORM REFLECTING TARGET .
CALL LRND(IX,UNIFRM,1,1,0) I
ALPHA2*PI*UNIFRM(1) "
§§gg§r21;=rposgrzlg e
T(2)=FPOSIT(2 ‘ 3
sposrrzlg-coszALPHA ' -
, FPOSIT{2)=SIN(ALPHA A
1 ELSE IF (IREFLT .EQ. 2) THEN 0
' *kikk*x PERFECT REFLECTING TARGET t
: £ALL REFLCT (IPOSIT,FPOSIT) ¢
wikdk  HENZYE MOTION MODEL <
\ ELSE IF (IREFLT .EQ. 3) THEN r~
' IPOSIT(1)“FPOSIT(1 o
:pos:wézi FPOS Ingi - K
CALL SEARCH (FPOSIT,IX) }ﬁ
END IF b
ELSE w
¢ e vk v e e v e vk sk e ol gk ol e vk e e s sk e e ok ol e e ok ke o ok e oA sk e i ke e 9k ok o e o e ok o st ok ok sl ok ke o ok e ek e e ok oA e ok e ode ok e R e ke _;‘
* THE TARGET PATH DOES INTERSECT THE SEARCHER'S DETECTION CIRCLE 3
***5{***21*’;‘5252& iﬂ*iﬂ‘ﬂ%&‘*iiim*ﬁi’g*i?%ﬂ***************m**** .:
CALL INTSCT(DSCRMT,A,B,S,T) 0
IF ((T .GE. 0) .AND. (T .LE. 1)) THEN X
Y e e e e e ok sk e e ok e o e ok ke ok R o e ke o ok e ok e oke A A e A e sk ok vk e e e sk v i e e oA ok ok ok ke o ok e ok ok ol ok ok o 7k ok e o o ok ok e e e R ,
* THE TARGET PATH INTERSECTS THE SEARCHER'S DETECTION CIRCLE
**EEE&’EE***Egﬁg*ﬂg*iigﬁz**m*****************m******************ﬁ :"‘ }
TCTDIS=TOTDIS+SECANTATAVELCTY !
GO TO 200 ¥
ELSE i
e e v ke e v e s ok ok e vk ke sl e vk i vk e ke e sk e s e ok o sl e e e sl ok sk e ok e e o e YR e ok ol ok e o ok o ke e o o e e ok e ok e ke e o e e kR Ak ok X
* THE TARGET PATH INTERSECTS THE _SEARCHER'S DETECTION CIRCLE s
% BUT NOT BETWEEN IPOSIT AND f ' b
**HERQEE&E&’*&S***523‘*&&“2&%‘2&*Eiii&i‘im‘}ﬁkE&EB*m**************** %
TOTDIS=TOTDIS+SECANT*VELCT? . -.f.
IF (IREFLT .EQ. 0) THEN o
wxkA** DIFFUSE REFLECTING TAPGET :
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o i

IPOSIT212=FPOSIT$I;
IPOSIT(2)=FPOSIT(2

CALL DIFUSE(IPCSIV,FPOSIT,IX,PI,TARGET)
ELSE IF (IREFLT .EQ. 1) THEN
*kkkxk UNIFORM REFLECTING TARGET
CALL LRND(IX,UNIFRM,1,1,0)
ALPHA®2*PI*UNIFRM(1)

. IPOSIT21;=FPOSIT213
IPOSIT(2)=FPOSIT(2

FPOSIT&I)'COSéALPHA
FPOSIT(2)=SIN(ALPA

ELSE IF (IREFLT .£Q. 2) THEN
*kxki% PERFECT REFLECTING TARGET

CALL REFLCT (TPOSIT,FPOSIT)
kkk*A%  HENZE MOTION MODEL

S o ™

-_oe,

.

PR e B

3 ELSE IF (IREFLT .EQ. 3) THEN
0 IPOSIT(1)=FPOSIT (L
‘ 1POSIT(2)=FPOSIT(2
CALL SEARCH (FPOSIT,IX)
END IF
END IF
ND IF
“' GO TO 100
4 200  DETECT(I)=TOTDIS
& 300  CONTINUE
R | - WRITE(69,450) (DETECT(L) L=l NREPS
" 450 FORMAT(IO(FE.3)) (L) =t )
‘ 500  STOP
e | 600 END
: e 5% v e ks e i ke s e e e ok e sk ks s i e e R ok sl e e e o ok s s ke e e e e ok ok e s e e e e o o ok s e o e ok e o ok ke o o i e e ok ok ke
. *
**gwgi*wi*giﬂwsg*Rizwigﬂ*wg*ingi******************************
e SUBROUTINE DSTNCE(POINTA,POINTB,DIST)
REAL POINTA(2) POINTB(2)

, DIST=SQRT((POINTA(1)-POINTB(1))**2+ (POINTA(2)~POINTB(2))**2)
, 10 RETURN
i3 20 END
N
N ¢ e s e v sk o ol e ok e sk e e ke ok sk ok ke e ke ok ol ok ok ok e ol e sk e sk ke o ol ol ok sk sk e e ok e ke v sk e e e e ok ok ok ol e e e vk ok sl ok e e e e e ok ok v e
y * FINDS RANDOM CO-ORDINATE WITHIN THE SEARCH AREA

RARKARRKKARIKR KA A Aok e e 2ok ok ok ok ek ok ke e ok e ok e ek ok ok ok e e ok ok e ok ook e ko ok ek ke e ok ok ok

SUBROUTINE SEARCH(POSIT, IX)

A REAL POSIT(2),PI,TARGET(2),UNIFRM(2)
o PI=3.1415927
. TARGET(1)20
‘ TARGET(Z )0

16 CALL SRND(IX,UNI¥RM,2,1,0)
‘. POSIT(1)=UNIFRI(1)%2-1
" POSIT(2)=UNIFRM(Z)*2-1

CALL DSTNCE(POSIT,TARGET,RADIUS)
IF (RADIUS .GT. 1) GO TO 10

b | 20  RETURN
30 END
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K ke otk ek ek ek Rk ok e Ak ek ek sk ok e R ek ok ko sk ko ok ok Ak e ek

s 3 | [

ARLE DR ST SR LTI R L E L R i
SUBROUTINE DISCRM(IPOSIT,FPOSIT,TARGET,DETRNG,DSCRMT,A,B)
REAL IPOSIT(2),FPOSIT(2),TARGET(2) I
A=(IPOSIT(1)-FPOSIT(1))**2+(IPOSIT(2)=FPOSIT(2))%*2

=% - * -
1P R ESTT 12 7 0STE (4) A IPGSTH (4) "TARBET ()73

1 RS T (3] TRRGER (23 v -DETRNGMH2

DSCRMT=B**2-4*p*C
20 FETURN
30 END
Aokl et e e R AR AR A de Ak e e e e e e e e s kel e e e e e e e e e e e
* DETERMINES POINT OF INTERSECTIO

TION OF
SRR IR LSRRI SO L S
SUBROUTINE INTSCT(DSCRMT,A,B,S,T)

S=(-B+SORT(DSCRMT)})/2/A
T=2-B-S RTgDSCRMT g;Z;A

10 RETURN
20 END
AR A Ak e e o e ek ke e st o e o e kol ko sk o e e e e o ke e ok e e e ok e e o e e

PREALLEBEEI LIRS DD RATOER AL PR 4 —

SUBROUTINE DIFUSE(IPOSIT,FPOSIT,IX,PI,TARGET)

REAL IPOSIT(2),FPOSIT(2),UNIFRM(2),TARGET(2),PI .
CALL LRND(IX,UNIFRM,1,1,0)
ANORML!ATAN(§POSIT(§;/IPOSIT(1%)

IF (IPOSTT(L) .GE. O) ANORML=PI+ANORML 5
BETA®ANORML+ASIN(2*UNIFRM(1)=1)
Fposxrg13-Iposxr213+z*cossszra ;
! FPOSIT{2)=IPOSTIT{Z)+2*SIN(BETA
3 CALL DISCRM(IPOSIT,FPOSIT,TARGET,1.0,DSCRMT, A,B)
| CALL INTSCT(DSCRMT,A,B,S,T)
; pposrr§1;u1posxr21;+s*2rposxT51g-:poszrglg‘
5 FPOSIT(2)nIPOSTIT(2)+S*({FPOSTT(2)-TPOSIT(2 f
v 10 RETURN
. l 20 END
Q s vk T e ke e e ok e ok TR e e ke ok ok e ke ok sk e e e ok ok o e e e e ok A o ke ke e ok e ke ok ok e e e e R A e e e o ¢ e e o e ok ok o o ke e o O e o ok
x
) REDLERRL LIS IR AL IR AR DS L LA LR
SUBROUTINE REFLCT(IPOSIT,FPOSIT)
, REAL IPOSIT(2),FPOSIT(2)
! CROSS®=TPOSIT(1)* (FPOSIT(2)-IPOSIT(2))+FPOSIT(2)*(FPOSIT(1
g | CROSSR-TROSIT(1) X (FROSIT(2) (2)) (2)*(FROSTT(1)
DOTm=((IPOSIT(1)-FPOSIT(1))*FPOSIT(1)+
; | 1(IPOSIé(2)-FPéS?T(2))*FéoggT(Z)) (1)
. i PERP1mS Rrg Iposzz(ll-rposxr§1)z**2+(rposrr(2)-Fposrr(2))**2)
> PERP2=SORT (FPOSIT (1) **2+FPOSIT(2)**2)
.| THETA=ACOS (DOT/ (PERPL*PERP2) )
r;l IF (CROSS .GT. 0) THEN
o Vi=FPOSIT(2)*SIN(THETA)~FPOSIT(1)*CNS(THETA)
r
o 48
s
>

[} [y R RN 'Y L PN R A o P .J‘.-‘-,Q LA ."_‘.|“~"n_‘\'-'nh‘.l‘ -f‘l'.v"’n » 8
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20
30

V2=-(FPOSIT(1)*SIN(THETA)+FPOSIT(2)*COS(THETA))
ELSE

Vl'-(FPO g*COS&THETA)+FPO \*SI¥§THETA))
V2=FPOSIT IN(THETA)=-FPOSI *C0S

END IF

1aV1A*24+72%%2
==2%(FPOSIT(1)*V1+FPOSIT(2)*V2)

IPOSIT(1)=FPOSIT(1
IPOSIT22;=FPOSIT22;

s

RETURN
END
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v APPENDIX B
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ANALYTIC MODEL OF UNIFORM REFLECTING TARGET DENSITY

.~ [}

5

":: E. B. Rockower of the Naval Postgraduate School, Monterey, California, derived ]
:: the target density for a uniform reflecting target. Iis initial assumptions were that '

i 1) the target starts uniformly on the circumference of a circulur area and

N 2)  the target density is equal to one on the area boundary.

[ . - ' . .

: Refer to Figure B.1, where Ry, is the radius of the search area and the uniform
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Figure B.1 Uniform Reflection Geometry,

I

3 . . ‘

' reflection angle is @ ~ U [ -n/2, n/2 |. He calculates as a function of r the target

N density, p (1), by assuming that the line density of targets on the smaller circle between

-0 und 0 is proportional to area density ol targets, Then the ling density of the smaller

; circle between -6 und 0 is .
/ aresin(r/R 4
L (L dd = (2m) ARCSIN (R y) . \
, -arcsin(r'RM .
' Therefore it follows that the area density would be v
7‘ P = (2R (% 1) ARCSIN (R y ). g
4 e oy . . S ye
’ T'o lind the wirget density at the center we take the limit of p(r) asr = 0 ‘

¢ par=0)=2n.

&0

- -

»
B
f
PR S ) . . . - e IR T o ]
T N e e e T S e L L T A e e AL fe oS S AR __l,u L
'?‘l' ."! " " A A AR A A MR At L AU R B D\ R ANNA R IR MM A p M N o A
3 Al ) bl




LIST OF REFERENCES

1.  Koopman, B. O., Search and Screening Report No. 56 of the Operations
Evaluation Group, Washington, D. C,, 1946,

) 2. Eagle, James N,, Estimating the Frobability of a Diffusing Target Encountering a
Stationary Sensor, Naval Research Logistics, Vol. 34, pp.43-51 (1987), John

i Wiley & Sons, Inc.
{ :
A 3, Sislioglu, M., A Mathematical Model for Calculating Detection Probability of a
X Diffusion Target, Master's Thesis, Naval Postgraduate School, Monterey '
X California, September 1984, '
;: 4, Abd El.Fadeel, S., A Mathematical Moael for Calculating Non-Detection \
! Probability of a Random Tour Target, Master's Thesis, Naval Postgraduate '
: School, Monterey California, December 1988,
! 5. Henze, J., Random Search Formulas and the Distribution of Detection Times, a -
. study for COMSUBPAC, August 1986.
6. Washburn, A. R., Search and Detection, Military Applications Section, “
. Operations Research Society of America, May 1981,
‘;: 7. Sears, F. W., Oprics, Addison-Wesley Publishing Company, Inc, Reading,
D Massachusetts, 1949. _
I
’ L
: ' '
L) J
\
) ¢
) v
L) ¢

51

B R S e TRt ¢ AT .'.-' s
A A | B L) ) £ v = ) 3 - " ¥




INITIAL DISTRIBUTION LIST

No. Copies
1. Defense Technical Information Center 2
Cameron Station f
Alexandria, VA 22304-6145
2. Library, Code 0142 2

Naval Postgraduate School
Monterey, CA 93943-5002

3 Dr. John Henze 1
COMSUBPAC (Code N-2)
Naval Station
Pear] Harbor, HI 96860-6550

4. Professor James N. Eagle 2
Naval Postgraduate School
Monterey, CA 93943

5. Professor Edward B. Rockower 2
Naval Postgraduaie School
Monterey, CA 93943

I T e R i Xl Yo

‘
-
R o1

6. Mr. Lee Endrus 1 |
COMSUBPAC (Code N-2) )
Naval Station .e
Pearl Harbor, HI 96860-6550 ;.

7. Dr. Larry Stone 1 e

METRON, Inc,
1479 Chain Bridge Road
McClean, VA 22101

8. Dr. Tony Richardson 1
Center for Naval Analyses
4401 Ford Avenue
P.O. Box 16268
Alexandria, VA 22302-0261

9.  Dr. Tony Ciervo l
Pacific-Sierra Research Corporation
12340 Santa Morica Blvd.
Los Angeles, CA 90025

\
10, Mr. John Hanley 1
Center for Naval Warfuare Studies
Naval War College
Newport, R1 02841-5010

3T e T
d A

-
A -

.‘R,

"

-

o

At e At et e " "-.-'
b I S I A R L N \‘..;_.-‘;’.!‘: N A WLOON RN NI P A LA A R T b WSt et e W N,
g * * ' 4 . 0 - ¥,
':.l A SLERCUNEY A ANCURIALS, o Mo ) ‘I . M\ A v, A oW 9,0 3
PR . N ! )




L1

12.

13.

14,

Commuander Submarine Development Squadron Twelve
U.S. Naval Submarine Base New London
Groton, CT 06340

Lt. Michael J. McNish
1489 Downham Market
Annapolis, MD 21401

Mr. Robert L. Carda
2182 54th Ave
Sacramento, CA 95822

Capt. John E. McNish (Ret.)
1489 Downham Market
Annapolis, MD 21401




